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Abstract. In a recent image processing system, convolution
operations play a significant role in manipulating image and
extracting features from images. Due to the increase of kernel
sizes, the image processing hardware suffers from severe hardware
complexity and power consumption. In this article, an area-efficient
structure is proposed for two-dimensional separable convolution
operations. Since a separable convolution allows to translate a
two-dimensional convolution into two one-dimensional convolutions,
it is possible to compute row-wise and column-wise convolutions
independently. Whereas the previous work performs such
one-dimensional convolutions in sequence, the proposed structure
computes the one-dimensional convolutions simultaneously by
rescheduling the computational sequence. Experimental results
show that the proposed structure saves approximately 80% and
38% of the hardware resources compared to the conventional and
previous structures, respectively. c© 2019 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.5.050404]

1. INTRODUCTION
Since the convolution neural network (CNN) makes a
breakthrough in a variety of applications [1], the convolution
operation becomes one of essential operations in image
processing systems [2, 3]. Depending on the convolutional
filter called kernel, the convolution operations can accom-
plish a wide range of imaginary effects including blurring,
sharpening, embossing, edge detection, and more [4].
In a recent image processing system, the kernel size
becomes larger in order to achieve more accurate and
reliable convolutional results. However, a large amount of
computations is inevitable due to the increase of kernel
size. Many approaches [5–7] have been proposed to mitigate
the severe computations in two-dimensional convolutions.
most researches [8, 9] focused on circuitry optimizations
of arithmetic operators including multipliers and adders.
Recently, DebasishMukherjee [10] proposed amore efficient
method using a separable convolution, which translates
a two-dimensional convolution into two one-dimensional
convolutions. Since it is possible to compute row-wise and
column-wise convolutions independently, the separable con-
volution [10] can reduce the computational complexity by
71% compared to the conventional two-dimensional convo-
lution. In this article, we propose an area-efficient structure
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for separable convolutions by rescheduling the computa-
tional sequences. Whereas the separable convolution [10]
performs one-dimensional convolutions in sequence, the
proposed structure computes the one-dimensional convo-
lutions simultaneously. The rest of this article is organized
as follows. Section 2 explains the background and Section 3
describes the proposed area-efficient structure. Experimental
results are discussed in Section 4 and concluding remarks are
made in Section 5.

2. BACKGROUND
The convolution operation is the process of adding each
element to its neighboring elements weighted by a kernel so
as to perform manipulating image and extracting features.
Since pixels are located in row and column directions,
a two-dimensional convolution is more widely applied to
image processing. The two-dimensional convolution can be
obtained by simply expanding one-dimensional convolution
in an additional orthogonal direction. More precisely, given
an input pixel xln for 1 ≤ l ≤ L and 1 ≤ n ≤ N , the
two-dimensional convolution is calculated as

yln =
K∑
i=1

K∑
j=1

wij× x(l+i)(n+j). (1)

Figure 1 depicts an example of the conventional two-
dimensional convolution structure [5] for K = 3. The
conventional structure [5] consists of K 2 multipliers, K 2

flip-flops, and K 2
− 1 adders to obtain one output pixel in

a single cycle. Each multiplier computes a weighted value
ykln for 1 ≤ k ≤ K 2, and the stored K weighted values ykln in
the flip-flops are added to generate a convolutional result yln
through the adder tree.

Among various approaches to reduce severe com-
putations in the two-dimensional convolution as shown
in Eq. (1), separable two-dimensional convolution [10]
is one of the most efficient algorithms, which translate
one two-dimensional convolution into two one-dimensional
convolutions. When the two-dimensional K × K kernel w
can be decomposed into K × 1 vertical kernel v and 1× K
horizontal kernel h, we can also decompose Eq. (1) into two
one-dimensional convolutions as

tln =
K∑
i=1

hi× xl(n+i), yln =
K∑
i=1

vi× t(l+i)n, (2)
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Figure 1. Structure of the conventional two-dimensional convolution for K = 3.

where hi, vi, and tln indicate an element in decomposed
horizontal kernel, decomposed vertical kernel, and the result
from the one-dimensional convolution between input image
and horizontal kernel, respectively. Separable convolution
first performs the one-dimensional horizontal convolution
with hi for 1 ≤ i ≤ K resulting in tln. Secondly, the
one-dimensional vertical convolution with vi for 1 ≤ i ≤ K
is performed to obtain an output result yln for 1 ≤ l ≤ L−
K + 1 and 1 ≤ n ≤ N − K + 1. Whereas each pixel is pro-
cessed independently in the conventional two-dimensional
convolutions as shown in Eq. (2), the previous separable
convolution [10] employs separable property when a kernel
w can be decomposed into vertical v andhorizontal h kernels.
In Figure 2, the structure for the separable two-dimensional
convolution is represented as forK = 3, which consists of 2K
multipliers, 2(K − 1) adders, 2K flip-flops, and K buffers
with size of L to obtain one output pixel in a single cycle.
The left-handed K multipliers and (K − 1) adders are used
to compute a horizontal convolution, and the right-handedK
multipliers and (K − 1) adders are used to compute vertical
convolutions.

3. PROPOSED AREA-EFFICIENT STRUCTURE
In this section, we propose a new area-efficient structure
by rescheduling the computational sequences. Although
the previous separable structure [10] is succeeded in
reducing the hardware resources remarkably by employing

the separable property, it is possible to further optimize
the structure by rescheduling the computations. First, let us
analyze the vertical convolution of Eq. (2) in more details.
When the size of kernelK is set to 3, Eq. (2) can be expanded
as Eq. (3)

yln = v1t(l+1)n+ v2t(l+2)n+ v3t(l+3)n. (3)

As for the previous separable structure [10] of Fig. 2,
the right-handed three multipliers are responsible for
multiplying each temporary value with vertical convolution
weight. However, most of those multipliers can be reduced
by computing the multiplication at appropriate time if the
temporary values are not generated simultaneously.

Thus, we propose a new area-efficient convolution
structure by computing a vertical multiplication as soon
as possible leading to the reduction of vertical multipliers.
To describe the main algorithm of the proposed structure,
Eq. (4) is expressed by inserting Eq. (2) into Eq. (3).

yln =
K∑
i=1

vi×

 K∑
j=1

hi× x(l+i)(n+j)

 . (4)

Whereas the previous separable convolution in Eq. (3)
computes all the vertical multipliers at the same time, the
proposed convolution in Eq. (4) computes one vertical
multiplier at one time in a sequential manner. According to
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Figure 2. Structure of the separable two-dimensional convolution for K = 3.

Table I. Comparison hardware complexity with synthesis results.

Structure Conventional [5] 〈O (K 2)〉 Separable [10] 〈O (2K )〉 Proposed 〈O (K )〉
Kernel size 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7 3× 3 5× 5 7× 7
Multiplier 5.0 k 14.0 k 27.4 k 2.3 k 5.7 k 8.1 k 2.2 k 3.4 k 4.6 k
Adder 1.1 k 3.3 k 6.6 k 0.6 k 1.2 k 1.7 k 0.6 k 1.2 k 1.7 k
Flip-flop 1.5 k 4.0 k 7.7 k 0.9 k 1.5 k 2.2 k 0.6 k 0.9 k 1.2 k
Total 7.6 k 21.3 k 41.7 k 3.8 k 8.4 k 12.0 k 3.4 k 5.5 k 7.5 k

Eq. (4), it is verified that one temporary value is generated at a
time, thus the proposed structure can replace the multipliers
of vertical convolutions with one multiplier that supports
multiple weights. For example, three vertical multipliers with
a fixed kernel weight can be replaced as a single vertical
multiplier with versatile kernel weights.

Figure 3 describes the proposed structure forK = 3. The
right-handed three multipliers and three multiplexers in the
previous separable structure [10] of Fig. 2 are completely
eliminated, and additional one multiplier and one mux
is placed before the intermediate buffer in the proposed
structure of Fig. 3. Note that an optional delay before the
vertical multiplier can be inserted so as to prevent from
lengthening the critical path as shown in Fig. 3.

4. EXPERIMENTAL RESULTS
To verify the advantages of the proposed structure, we
have implemented various convolution architectures with
different kernel sizes and compared with the conventional
convolution structure [5] and the separable convolution
structure [10]. For a fair comparison, all the convolution

structures are synthesized in 65 nm CMOS technology with
200 MHz clock frequency, and Table I provides synthesis
results in terms of equivalent gate counts. According to
Table I, the proposed structure reduces the redundant
usage of 80% and 38% of multipliers compared to the
conventional [5] and previous separable structures [10].
Since the multipliers are the most dominant element in
a convolution structure, the proposed structure always
leads to the smallest hardware complexity. Furthermore,
the hardware complexity in terms of the kernel size of K
is summarized to investigate how efficiently the proposed
method optimizes the hardware resources. According to
Table I, the proposed structure always outperforms the
conventional and the previous separable structure [10] for
various kernel sizes based on big-O notation.

5. CONCLUSION
A new proposed convolution structure has been proposed
to mitigate the complex hardware complexity caused by the
increase of kernel and image sizes. The proposed structure
firstly analyzes the previous separable convolution [10] and
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Figure 3. Structure of the proposed two-dimensional convolution for K = 3.

rescheduled the multiplications of the vertical convolution
to save several multipliers. Experimental results show that
the proposed structure guarantees the smallest hardware
complexity without any performance degradation, and the
improvement become more significant as the kernel size in-
creases. Thus, the proposed structure can provide a solution
to optimize severe convolutional hardware complexity.
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